3.5 Bioretention Facility

Type of BMP
LID – Bioretention

Treatment Mechanisms
Infiltration, Evapotranspiration, Evaporation, Biofiltration

Maximum Drainage Area
This BMP is intended to be integrated into a project’s landscaped area in a distributed manner. Typically, contributing drainage areas to Bioretention Facilities range from less than 1 acre to a maximum of around 10 acres.

Other Names
Rain Garden, Bioretention Cell, Bioretention Basin, Biofiltration Basin, Landscaped Filter Basin, Porous Landscape Detention

Description

Bioretention Facilities are shallow, vegetated basins underlain by an engineered soil media. Healthy plant and biological activity in the root zone maintain and renew the macro-pore space in the soil and maximize plant uptake of pollutants and runoff. This keeps the Best Management Practice (BMP) from becoming clogged and allows more of the soil column to function as both a sponge (retaining water) and a highly effective and self-maintaining biofilter. In most cases, the bottom of a Bioretention Facility is unlined, which also provides an opportunity for infiltration to the extent the underlying onsite soil can accommodate. When the infiltration rate of the underlying soil is exceeded, fully biotreated flows are discharged via underdrains. Bioretention Facilities therefore will inherently achieve the maximum feasible level of infiltration and evapotranspiration and achieve the minimum feasible (but highly biotreated) discharge to the storm drain system.

Siting Considerations

These facilities work best when they are designed in a relatively level area. Unlike other BMPs, Bioretention Facilities can be used in smaller landscaped spaces on the site, such as:

- Parking islands
- Medians
- Site entrances

Landscaped areas on the site (such as may otherwise be required through minimum landscaping ordinances), can often be designed as Bioretention Facilities. This can be accomplished by:

- **Depressing** landscaped areas below adjacent impervious surfaces, rather than elevating those areas
- Grading the site to direct runoff from those impervious surfaces *into* the Bioretention Facility, rather than away from the landscaping
- Sizing and designing the depressed landscaped area as a Bioretention Facility as described in this Fact Sheet
Bioretention Facilities should however not be used downstream of areas where large amounts of sediment can clog the system. Placing a Bioretention Facility at the toe of a steep slope should also be avoided due to the potential for clogging the engineered soil media with erosion from the slope, as well as the potential for damaging the vegetation.

Design and Sizing Criteria
The recommended cross section necessary for a Bioretention Facility includes:

- Vegetated area
- 18' minimum depth of engineered soil media
- 12' minimum gravel layer depth with 6' perforated pipes (added flow control features such as orifice plates may be required to mitigate for HCOC conditions)

While the 18-inch minimum engineered soil media depth can be used in some cases, it is recommended to use 24 inches or a preferred 36 inches to provide an adequate root zone for the chosen plant palate. Such a design also provides for improved removal effectiveness for nutrients. The recommended ponding depth inside of a Bioretention Facility is 6 inches; measured from the flat bottom surface to the top of the water surface as shown in Figure 1.

Because this BMP is filled with an engineered soil media, pore space in the soil and gravel layer is assumed to provide storage volume. However, several considerations must be noted:

- Surcharge storage above the soil surface (6 inches) is important to assure that design flows do not bypass the BMP when runoff exceeds the soil’s absorption rate.
- In cases where the Bioretention Facility contains engineered soil media deeper than 36 inches, the pore space within the engineered soil media can only be counted to the 36-inch depth.
- A maximum of 30 percent pore space can be used for the soil media whereas a maximum of 40 percent pore space can be use for the gravel layer.
Engineered Soil Media Requirements

The engineered soil media shall be comprised of 85 percent mineral component and 15 percent organic component, by volume, drum mixed prior to placement. The mineral component shall be a Class A sandy loam topsoil that meets the range specified in Table 1 below. The organic component shall be nitrogen stabilized compost\(^1\), such that nitrogen does not leach from the media.

<table>
<thead>
<tr>
<th>Percent Range</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-80</td>
<td>Sand</td>
</tr>
<tr>
<td>15-20</td>
<td>Silt</td>
</tr>
<tr>
<td>5-10</td>
<td>Clay</td>
</tr>
</tbody>
</table>

The trip ticket, or certificate of compliance, shall be made available to the inspector to prove the engineered mix meets this specification.

Vegetation Requirements

Vegetative cover is important to minimize erosion and ensure that treatment occurs in the Bioretention Facility. The area should be designed for at least 70 percent mature coverage throughout the Bioretention Facility. To prevent the BMP from being used as walkways, Bioretention Facilities shall be planted with a combination of small trees, densely planted shrubs, and natural grasses. Grasses shall be native or ornamental; preferably ones that do not need to be mowed. The application of fertilizers and pesticides should be minimal. To maintain oxygen levels for the vegetation and promote biodegradation, it is important that vegetation not be completely submerged for any extended period of time. Therefore, a maximum of 6 inches of ponded water shall be used in the design to ensure that plants within the Bioretention Facility remain healthy.

A 2 to 3-inch layer of standard shredded aged hardwood mulch shall be placed as the top layer inside the Bioretention Facility. The 6-inch ponding depth shown in Figure 1 above shall be measured from the top surface of the 2 to 3-inch mulch layer.

Curb Cuts

To allow water to flow into the Bioretention Facility, 1-foot-wide (minimum) curb cuts should be placed approximately every 10 feet around the perimeter of the Bioretention Facility. Figure 2 shows a curb cut in a Bioretention Facility. Curb cut flow lines must be at or above the \(V_{\text{BMP}}\) water surface level.

\(^1\) For more information on compost, visit the US Composting Council website at: http://compostingcouncil.org/
To reduce erosion, a gravel pad shall be placed at each inlet point to the Bioretention Facility. The gravel should be 1- to 1.5-inch diameter in size. The gravel should overlap the curb cut opening a minimum of 6 inches. The gravel pad inside the Bioretention Facility should be flush with the finished surface at the curb cut and extend to the bottom of the slope.

In addition, place an apron of stone or concrete, a foot square or larger, inside each inlet to prevent vegetation from growing up and blocking the inlet. See Figure 3.

Terracing the Landscaped Filter Basin

It is recommended that Bioretention Facilities be level. In the event the facility site slopes and lacks proper design, water would fill the lowest point of the BMP and then discharge from the basin without being treated. To ensure that the water will be held within the Bioretention Facility on sloped sites, the BMP must be terraced with nonporous check dams to provide the required storage and treatment capacity.

The terraced version of this BMP shall be used on non-flat sites with no more than a 3 percent slope. The surcharge depth cannot exceed 0.5 feet, and side slopes shall not exceed 4:1. Table 2 below shows the spacing of the check dams, and slopes shall be rounded up (i.e., 2.5 percent slope shall use 10’ spacing for check dams).

<table>
<thead>
<tr>
<th>Table 2: Check Dam Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6” Check Dam Spacing</td>
</tr>
<tr>
<td>Slope</td>
</tr>
<tr>
<td>1%</td>
</tr>
<tr>
<td>2%</td>
</tr>
<tr>
<td>3%</td>
</tr>
</tbody>
</table>
Roof Runoff
Roof downspouts may be directed towards Bioretention Facilities. However, the downspouts must discharge onto a concrete splash block to protect the Bioretention Facility from erosion.

Retaining Walls
It is recommended that Retaining Wall Type 1A, per Caltrans Standard B3-3 or equivalent, be constructed around the entire perimeter of the Bioretention Facility. This practice will protect the sides of the Bioretention Facility from collapsing during construction and maintenance or from high service loads adjacent to the BMP. Where such service loads would not exist adjacent to the BMP, an engineered alternative may be used if signed by a licensed civil engineer.

Side Slope Requirements

Bioretention Facilities Requiring Side Slopes
The design should assure that the Bioretention Facility does not present a tripping hazard. Bioretention Facilities proposed near pedestrian areas, such as areas parallel to parking spaces or along a walkway, must have a gentle slope to the bottom of the facility. Side slopes inside of a Bioretention Facility shall be 4:1. A typical cross section for the Bioretention Facility is shown in Figure 1.

Bioretention Facilities Not Requiring Side Slopes
Where cars park perpendicular to the Bioretention Facility, side slopes are not required. A 6-inch maximum drop may be used, and the Bioretention Facility must be planted with trees and shrubs to prevent pedestrian access. In this case, a curb is not placed around the Bioretention Facility, but wheel stops shall be used to prevent vehicles from entering the Bioretention Facility, as shown in Figure 4.
Planter Boxes

Bioretention Facilities can also be placed above ground as planter boxes. Planter boxes must have a minimum width of 2 feet, a maximum surcharge depth of 6 inches, and no side slopes are necessary. Planter boxes must be constructed so as to ensure that the top surface of the engineered soil media will remain level. This option may be constructed of concrete, brick, stone or other stable materials that will not warp or bend. Chemically treated wood or galvanized steel, which has the ability to contaminate stormwater, should not be used. Planter boxes must be lined with an impermeable liner on all sides, including the bottom. Due to the impermeable liner, the inside bottom of the planter box shall be designed and constructed with a cross fall, directing treated flows within the subdrain layer toward the point where subdrain exits the planter box, and subdrains shall be oriented with drain holes oriented down. These provisions will help avoid excessive stagnant water within the gravel underdrain layer. Similar to the in-ground Bioretention Facility versions, this BMP benefits from healthy plants and biological activity in the root zone. Planter boxes should be planted with appropriately selected vegetation.

![Figure 5: Planter Box](image)

Overflow

An overflow route is needed in the Bioretention Facility design to bypass stored runoff from storm events larger than V_{BMP} or in the event of facility or subdrain clogging. Overflow systems must connect to an acceptable discharge point, such as a downstream conveyance system as shown in Figure 1 and Figure 4. The inlet to the overflow structure shall be elevated inside the Bioretention Facility to be flush with the ponding surface for the design capture volume (V_{BMP}) as shown in Figure 4. This will allow the design capture volume to be fully treated by the Bioretention Facility, and for larger events to safely be conveyed to downstream systems. The overflow inlet shall **not** be located in the entrance of a Bioretention Facility, as shown in Figure 6.
Underdrain Gravel and Pipes
An underdrain gravel layer and pipes shall be provided in accordance with Appendix B – Underdrains.

![Incorrect Placement of an Overflow Inlet](Image)

Figure 6: Incorrect Placement of an Overflow Inlet.

Inspection and Maintenance Schedule
The Bioretention Facility area shall be inspected for erosion, dead vegetation, soggy soils, or standing water. The use of fertilizers and pesticides on the plants inside the Bioretention Facility should be minimized.

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>Keep adjacent landscape areas maintained. Remove clippings from landscape maintenance activities.</td>
</tr>
<tr>
<td></td>
<td>Remove trash and debris</td>
</tr>
<tr>
<td></td>
<td>Replace damaged grass and/or plants</td>
</tr>
<tr>
<td></td>
<td>Replace surface mulch layer as needed to maintain a 2-3 inch soil cover.</td>
</tr>
<tr>
<td>After storm events</td>
<td>Inspect areas for ponding</td>
</tr>
<tr>
<td>Annually</td>
<td>Inspect/clean inlets and outlets</td>
</tr>
</tbody>
</table>
Bioretention Facility Design Procedure

1) Enter the area tributary, A_T, to the Bioretention Facility.

2) Enter the Design Volume, V_{BMP}, determined from Section 2.1 of this Handbook.

3) Select the type of design used. There are two types of Bioretention Facility designs: the standard design used for most project sites that include side slopes, and the modified design used when the BMP is located perpendicular to the parking spaces or with planter boxes that do not use side slopes.

4) Enter the depth of the engineered soil media, d_s. The minimum depth for the engineered soil media can be 18’ in limited cases, but it is recommended to use 24’ or a preferred 36’ to provide an adequate root zone for the chosen plant palette. Engineered soil media deeper than 36’ will only get credit for the pore space in the first 36’.

5) Enter the top width of the Bioretention Facility.

6) Calculate the total effective depth, d_E, within the Bioretention Facility. The maximum allowable pore space of the soil media is 30% while the maximum allowable pore space for the gravel layer is 40%. Gravel layer deeper than 12’ will only get credit for the pore space in the first 12’.

 ![Diagram of Bioretention Facility](image)

 a. For the design with side slopes the following equation shall be used to determine the total effective depth. Where, d_p is the depth of ponding within the basin.

 $$d_E (ft) = 0.3 \times \left(\frac{[w_T (ft) \times d_S (ft)] + 4(d_p (ft))^2}{w_T (ft)} \right) + 0.4 \times 1 (ft) + d_p (ft) \left[4d_p (ft) + (w_T (ft) - 8d_p (ft)) \right]$$

 This above equation can be simplified if the maximum ponding depth of 0.5’ is used. The equation below is used on the worksheet to find the minimum area required for the Bioretention Facility:

 $$d_E (ft) = (0.3 \times d_S (ft) + 0.4 \times 1 (ft)) - \left(\frac{0.7 (ft^2)}{w_T (ft)} \right) + 0.5 (ft)$$
b. For the design without side slopes the following equation shall be used to determine the total effective depth:
\[d_E (\text{ft}) = d_p (\text{ft}) + [(0.3) \times d_s (\text{ft}) + (0.4) \times 1(\text{ft})] \]

The equation below, using the maximum ponding depth of 0.5', is used on the worksheet to find the minimum area required for the Bioretention Facility:
\[d_E (\text{ft}) = 0.5 (\text{ft}) + [(0.3) \times d_s (\text{ft}) + (0.4) \times 1(\text{ft})] \]

7) Calculate the minimum surface area, \(A_M \), required for the Bioretention Facility. This does not include the curb surrounding the Bioretention Facility or side slopes.
\[A_M (\text{ft}^2) = \frac{V_{BMP} (\text{ft}^3)}{d_E (\text{ft})} \]

8) Enter the proposed surface area. This area shall not be less than the minimum required surface area.

9) Verify that side slopes are no steeper than 4:1 in the standard design, and are not required in the modified design.

10) Provide the diameter, minimum 6 inches, of the perforated underdrain used in the Bioretention Facility. See Appendix B for specific information regarding perforated pipes.

11) Provide the slope of the site around the Bioretention Facility, if used. The maximum slope is 3 percent for a standard design.

12) Provide the check dam spacing, if the site around the Bioretention Facility is sloped.

13) Describe the vegetation used within the Bioretention Facility.
References Used to Develop this Fact Sheet

